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tion of a discourse level model of dialogue understanding.

ABSTRACT (Continued)

This dissertation presents a computational theory and partial implementa-
The theory extends

and integrates plan-based and linguistic-based approaches to language processing,
arguing that such a synthesis is needed to computationally handle many discourse

level phenomena present in naturally occurring dialogues.

The simple, fairly

syntactic results of discourse analysis (for example, explanations of phenomena
in terms of very local discourse contexts as well as correlations between
syntactic devices and discourse function) will be input to the plan recognition
system, while the more complex inferential processes relating utterances have

been totally reformulated within a plan-based framework.

Such an integration

has led to a new model of plan recognition, one that constructs a hierarchy of

domain and meta-plans via the process of constraint satisfaction.

Furthermore,

the processing of the plan recognizer is explicitly coordinated with a set of

linguistic clues.

The resulting framework handles a wide variety of difficult

linguistic phenomena (for example, interruptions, fragmental and elliptical
utterances, and presence as well as absence of syntactic discourse clues),

while maintaining the computational advantages of the plan-based approach. The
implementation of the plan recognition aspects of this framework also addresses
two difficult issues of knowledge representation inherent in any plan recognition
task.
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Abstract

One promising computational approach to understanding dialogues has involved
modeling the goals of the speakers in the domain of discourse. In general, these models work
well as long as the topic follows the goal structure closely, but they have difficuity accounting
for interrupting subdialogues such as clarifications and corrections. Furthermore. such models
are typically unable to use many processing clues provided by the linguistic phenomena of the

dialogues.

This dissertdtion presents a computational theory and partial implementation of a
discourse level model of dialogue understanding. The theory extends and integrates plan-
based and linguistic-based approaches to language processing, arguing that such a synthesis is
needed to computationally handle many discourse level phenomena present in naturally
occurring dialogues. The simple, fairly syntactic results of discourse analysis (for example,
explanations of phenomena in terms of very local discourse contexts as well as correlations
between syntactic devices and discourse function) will be input to the plan recognition system,
while the more complex inferential processes relating utterances have been totally
reformulated within a plan-based framework. Such an integration has led to a new model of
plan recognition, one that constructs a hierarchy of domain and meta-plans via the process of
constraint satisfaction. Furthermore, the processing of the pian recognizer is explicitly
coordinated with a set of linguistic ciues. The resulting framework handles a wide ‘variety of

difficult linguistic phenomena (for example. interruptions, fragmental and elliptical utterances,
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and presence as well as absence of syntactic discourse clues). while maintaining the
computational advantages of the plan-based approach. The implementation of the plan

recognition aspects of this framework also addresses two difficult issues of knowledge

representation inherent in any plan recognition task.
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Introduction ’

- e v 2, ,° 5 =

1. Overview

Naturaily occurring dialogues exhibit a wide variety of linguistic behavior problematic for

, 2
) existing natural language understanding systems. In particular, much of the interpretation pro- :f.
cess appears highly dependent on various types of discourse and pragmatic analyses. This .
L J
work presents a computational theory and partial implementation of a discourse level model of P
v
dialogue understanding. e,
Consider the demands that the following dialogue (recorded at the information booth of -
a train station in Toronto (Horrigan [47])) would place on a computer system that could take :‘
the role of the clerk during the understanding process.
[)
1) Passenger: The eight-fifty to Montreal?
2) Clerk: Eight-fifty to Montreal? Gate seven. ~
\]
3) Passenger: Where is it? =]
.
4) Clerk: Down this way to your left. Second one on the left. ’t
5) Passenger: OK. Thank you. -
‘
Dialogue |
. 5
In order to process initial sentence fragments such as utterance (1), such a system would need
knowledge regarding a presupposed context of the dialogue. For example, the system could pA
-
‘&
1 R,

- e T

o,
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use the knowledge that the speaker probably wants to either board or meet a train to infer that o

the speaker wants to know the train gate. Yet. since the dialogue is more than a series of unre-

lated question/answer exchanges, the system's understanding process is also dependent on the >
previous context provided by the dialogue itself. For example, the system could not under-.
stand the pronoun "it” and thus utterance (3) without using the knowledge provided by the

preceding utterances. Furthermore, the system should be able to ascertain that utterance (3) 4

initiates a clarification subdialogue with respect to the previous topic. Finally, the system 3

should be able to exploit various linguistic signals used by the speaker, for example the use of ;

"OK" to mark the conclusion of the clarification subdialogue and the use of "Thank you" to E

mark the conclusion of the dialogue. <

V!

Analysis of dialogues in other domains yields similar results. Consider Dialogue 2 :

(Sidner and Bates [89]), the initial portion of a,scenario developed from protocols in which a :

user interacts with an editing system o manipulate network structures in a knowiedge "

representation language. i

'

6) User: Show me the generic concept called “employee.” :

2 7) System: OK. <system displays network) ' !

:‘ 8) User: [ can't fit a new IC below it. Can you move it up? :

9) System: Yes. <system displays network)> :

10)User: OK. now make an individual employee concept whose first name is “Sam”

and whose last name is “Jones.” The Social Security number is X

234-56-7899. A

11) System: OK. :'E

Dialogue 2

As above, the system will need to be able to relate current utterances to previous utterances in
the dialogue. [n particular, the system must recognize that some utterances introduce and con-
tinue a topic (e.g. the subdialogues corresponding to execution of an editing plan in lines (6)-

(7) and (10)-(11)) while others temporarily interrupt a topic (e.g. the correction subdialogue



<,
.
S
3 «
corresponding to lines (8)-(9)). Furthermore, relationships between utterances occur not only K
4
across but also within subdialogues, as in lines (8) and (10). And again, we see the use of e
{
LN
linguistic clues such as "OK"™ and "now" to explicitly signal utterance relationships (for exam- .
ple, in (10) the resumption and continuatioh of the interrupted topic corresponding to execu- :
tion of the editing plan). ‘f
1Y
rq
Finally, imagine a system capable of taking the role of the operator and clerk in Dialogue ~
fragments 3 and 4, respectively. NS
N
i 12) User: Could you mount a magtape for me? It's tapel. No ring please. Can you ~ :
A do it in five minutes? -
% '\
' 13) Operator: We are not allowed to mount that magtape. You'll have to talk to operator
about it. After nine a.m. Monday through Friday. N
! 14) User: How about tape2? &
. Dialogue 3 ';
’,
15) Passenger:  Trains going from here to Ottawa? 4
. <
16) Clerk: Ottawa. Next one is at four-thirty. e}
L i
17) Passenger:  How about Wednesday? t
18) Clerk: One at nine thirty, nine thirty in the moming, four thirty in the 4
afternoon...yeah, that’s it. N\
Dialogue 4 :_.
o
N,
(Dialogue 3 is a terminal transcript of a user/operator link, provided by Bill Mann. Dialogue 4 :;-
is from the same corpus as Dialogue 1). As in the above dialogues, such a system will need to
B i
] be able o recognize various relationships between utterances. For example, the latter portions :-"
Y
.
of line (12) elaborate an initial request to mount a tape, while line (14) modifies and replaces ;-
)
the whole set of utterances corresponding to the elaborated request. Furthermore, in both
dialogues we see the use of "how about” as an explicit signal for the modification relationship. :'\‘
. .
As in Dialogue 1, the system will also need to use some sort of context to understand sentence f;:'j
fragments and more generally elliptical utterances. While the linguistic context of the previous .
discourse is sufficient to understand (14), to understand (15) and (17) knowledge regarding -

rE
-




%
N 4 :

) some other context is also needed. In line (15) this is because there is no previous discourse to -
" draw upon, while in line (17) this is because the concept that Wednesday replaces is only ‘
.‘. implictly part of the preceding dialogue. _ ‘
/

‘: This dissertation will present a comp;tatio;\;l theow and partial implementation of the ¢

: . dialogue understanding process that addresses these issues. As we will see, the theory extends

’_ plan-based approaches for sentence and simple dialogue understanding by incorporating more .
linguistic-based insights from the area of discourse analysis. In particular, the simple, more syn-

f tactic resuits of discourse analysis (for example, explanations of phenomena in terms of very s
S.'z local discourse contexts as well as correlations betweer; syntactic devices and discourse func- :
& tion) will be used without change, while the more complex inferential processes relating utter-

i ) ances have been totally reformulated within a plan-based framework. Such a theory will enable
<,
2,

the handling of a wide range of linguistic phenomena while maintaining the computational

advantages and complementary coverage of the plan-based approach. Such a model recognizes

&
: that a dialogue can (and for robustness as well as efficiency, should) be analyzed along several
X _ :
o) dimensions. '
N 2. The Discourses and their Analyses :
AN
s Z
o The theory presented in this work draws upon the analysis of four sets of person-person .
N .
rd dialogues, characterizing situations in which the desirability of a computer system as a conver-
R sational participant is easily imagined. Examination of such dialogues provides data regarding '
3 ;
, the kinds of language people will likely use in similar person-machine interactions as well as ’
]
Ih [}
: indications of the kinds of interpretations people construct from such utterances. !
0 Although the dialogues are somewhat restricted in topic and invoive only cooperative
‘l
N exchanges, we will see that they nonetheless exhibit many interesting linguistic phenomena
charactenistic of more freewheeling exchanges. They thus provide a nice testbed for developing
:. a computationally tractable system that yet addresses some complex linguistic issues.
¢
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Before discussing the data, a bit of terminology will be useful. A discourse wiil refer to
any exchange involving more than a single sentence, for example texts, paragraphs, dialogues,
conversations, and stories. An utrerance will refer to both a speaker’s complete turn as well as
individual sentences within a turn; the intefided usage should always be clear from the context.
For example, in the context of Dialogue 2 line (8) will be referred to as the user’s second utter-
ance, while in the context of line (3) "Can you move it up?” will be referred to as the user’s
second utterance. Finally, since the model treats spoken texts as written texts (i.e., intonation
cues, etc. are ignored) the terms speaker, hearer. and utterance will be used loosely for all the

dialogues.
2.1. The Data

2.1.1. Train Station Information Clerk ,

With the permission of the station master. Horrigan [47] tape recorded a corpus of dialo- -

gues between people seeking information and a clerk in the "green light” booth in Union Sta-
tion, Toronto, July 1976. Of the four hours of dialogue collected approximately the first hun-
dred dialogues were transcribed, sever:een of which looked especially interesting and were

selected for further analysis.

The dialogues are examples of information-seeking dialogues, dialogues in which an agent
seeks information with respect to a plan that will not be executed dunng the dialogue. They
are similar to both the question-answering dialogues of Grosz [37]. where a person queried a
(simulated) data base in order to solve an assigned probiem, and the informauon seeking dialo-

gues of Carberry {15] in the domain of university courses. policies. and requirements.

The advantages of the train corpus were numerous. Phe duslogues were collected 1n a
totally natural setting, yet provided data on the type of language people would use 1t they had

verbal access to an intelligent provider of information. Furthermore. the dialogues were sim-
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v, ple. Since they were typically short in length (less than a dozen lines) the theory could easily
l be tested on full dialogues as opposed to just fragments. Similarly, since they were limited in
’:" topic a small set of underlying plans formed the basis for a large number of dialogues. Practi-
N cally all of the dialogues contained questions only related to meeting trains, boarding trains, or
E locating rooms or offices in the train station. Yet, despite their simplicity the dialogues exhi-
: bited the problematic linguistic phenomena targeted for investigation in this research.
9 2.1.2. KLONE-ED system
Sidner [87] collected a set of eight protocols, each approximately two hours in length (i.e. _
~ several single-spaced pages), between simulated natural language understanding systems and [
users manipulating a database using natural language and a graphics display. Three of these
N
* protocols simulated KLONE-ED. a graphic editing system that could manipulate structures in ~'
. the domain of the knowledge representation lahguage KL-ONE [11}. To collect these proto-
R cols, users were given a specific task to perform using the KLONE-ED system. All interactions
.‘;: took place via a computer terminal using natural (i.e. non-simplified) English, and users were
:: aware that a person was simulating the KLONE-Ed system. From these protocols, Sidner and
- Bates [89] constructed a prototypical scenario containing a subset of the capacities possessed by
the simulated systems, concentrating on those that seemed plausible for the near future. Dialo- ‘
.:. gue 2 is the initial portion of this scenario.
{ The KLONE-ED dialogues are examples of task-oriented dialogues. dialogues in which
: agents work cooperatively on a task that is performed during (and via) the dialogue. However, .
: the dialogues are unusual in allowing both linguistic and graphic modes of interaction. In d
! particular. the KLONE-ED system’s interaction with the user is often non-linguistic. with utter-
; ances only being produced to satisfy simple conversational conventions.
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2.1.3. Computer Operator

The third corpus of dialogues was provided by Bill Mann and consists of sixteen
(cleaned-up) computer terminal transcripts collected when users linked to a (human) operator.
Like the train dialogues. the set of tape d‘ialog;xé were collected in natural, as opposed to
experimental, situations. Like in the KLONE-ED dialogues, the mode of communication was
the more typical typed (rather than spoken) computer interface. In general the lengths of the

transcripts are approximately one type written page.

This corpus contains both information-seeking and task-oriented dialogues. For exam-
ple. there are dialogues where the user only wants a question answered, such as:
Linker: Do you know if system will really be up all night?
Operator: Unless we crash!
There are also task-oriented dialogues such as Dialogue 3, where the user and the operator
need (o0 cooperate 1n order to perform the user’s task. Finally, the corpus contains some dialo-

gues that exhibit examples of both types of interactions.

2.1.4. Chinese Cooking Consultant

The final corpus of dialogues was collected by Kahrs at al [S0]. The data consists of two
computer terminal transcripts in which a (human) expert guides a novice in the preparation of
a Chinese meal. As in the KLONE-ED transcripts the dialogues correspond to several pages
of single spaced text and were elicited solely for the purposes of data collection. As in the
task-oriented dialogues of Grosz [37], where an expert instructed an apprentice on the assembly
of part of an air compressor, collection of the dialogues provided data on the language reqﬁire-
ments of a possible computer consuitant. Unfortunately, some of the data collected from these
dialogues was a bit t00 interesting with respect to the scope of this research. For example, the
fact that in both dialogues the expert and novice were triends led to the discussion of too many

topics unrelated to the immediate cooking task at hand.
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A 2.2. The Data Analysis
| 5 Despite the differences among the sets of dialogues with respect to domain, genre, mode ;
N of communication, length, spontaneity, and so on, a number of discourse level phenomena are .
" characteristic of all the interactions. Such ‘generéllities provide a natural set of goais for the :
Z"’ design of systems that ultimately will be able to understand the type of unrestricted English
now used in corresponding person-person interactions. The following sections will present the '
> results targeted for this particuiar research, identifying both the linguistic phenomena and their
\ implications for the design of a natural language system. (While the data could also be .
3 analyzed to see how the frequency of such phenomena varies depending on such features as
5 mode of communication or gender of speaker, those types of resuits are irrelevant for the pur-
2‘ poses of this particular research).
% |
* 2.2.1. Subdialogues and their Relationships .
: Any extended dialogue can be decomposed into.subdi;z'/ogues. cohesive subunits that can
:‘3 themselves be decomposed into further subdialogues. Grosz [37] noted that removal of such
’ subunits does not seem to effect the coherency of the larger unit. She also noted various
: linguistic devices supporting this segmentation phenomena.
r. The range of subdialogues exhibited varies across the sets of data. For example. in the :
task-oriented exchanges subdialogues correspond not only to execution of the subtasks but also !
‘ to meta-discussions such as clarifications and corrections of the subtask execution. Recall _
: Dialogue 2. Lines (6)-(7) and (10)-(11) are subdialogues corresponding to editing subtasks.
. while (8)-(9) is an interrupting subdialogue correcting the execution results of the previous sub-
task. )
E [n the more personal cooking dialogues. subdialogues to(all'_v irrelevant to execution of '
the task at hand occur, for example the gringo exchange of the following fragment: X
: M: Are you going to use the wok? :;
., >
. t
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Yes, of course!  How else does one cook szechuan food?

OK. then you should slice the garlic. Use 1-2 cloves. There are gringos in the
world my dear...

That's irrelevant. We're cooking chinese, not mexican food, senor.

There are gringos in EVERY cuisine!!’ i.e., there exists an x s.t. x is a cook an x is
mapped onto a prototypical gringo.

Do you know the chinese equivalent of gringohood?
No, I'm afraid ['m speschless.

Oh well, I don’t know either. Back to the kitchen.

In contrast, subdialogues in the information-seéking exchanges do not correspond to exe-
cution of subtasks, since such execution takes place outside the dialogue. Recall Dialogue 1,
where the user's underlying goal is to board the eight-fifty to Montreal. Lines (1) and (2) form
a clarification subdialogue regarding the departure gate of the train to be boarded, while lines

(3)-(4) form a clarification of the previous clarification.

Finally, the train station corpus has a large number of subdialogues corresponding to
communication checks, due to the noisy environment. For example, consider the last two

utterances of the following fragment:

Going to Stratford. what gate would it be?
Which one is that?

Two fifteen, [ think is the ...

Yeah, two fifteen. Gate number eight.
Number eight?

Right.

Not only do the subdialogues differ in content. but they also differ in the way they relate
to the existing discourse context. For example. Grosz [37] noted that in task-oriented dialogues
subdialogues corresponding to execution of subtasks could be related to one another via the

corresponding subtask execution structure. In other words. subtasks are generally related via a
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hierarchical tree structure; discussion of such subtasks generally precedes depth-first through
this tree. Thus, the backbone of the Chinese cooking dialogues should (and does) consist of

subdialogues organized according to the execution of the stages of the recipe.

Unfortunately the other types of sub&ialog;:;s do not appear to fit into this framework.
In particular, many non-subtask subdialogues suspend, rather than continue, traversal of such
task structures; the subtask traversal is then resumed when the interrupting subdialogues are
concluded. For example, in Dialogue 2 the correction exchange of lines (8)-(9) temporarily
interrupts the flow of subtask subdialogues. Such an interruption dynamically occurred due to
the unanticipated aspects of the system’s network display. In information-seeking dialogues
such as Dialogue 1 where the task execution is non-linguistic, such interruptions are all that
appear linguistically; use of the information booth is unnecessary when plan execution goes
§moothly. While the interrupting subdialogues are not generally organized into some sort of
larger global structure, they often can be related to the subdialogue interrupted. For example,
recall the clarification and correction relationships in Dialogues 1 and 2 with the preceding
subdialogues (lines (3)-(4) and (8)-(9), respectively). However, as illustrated by the cooking
exchange relationships that further the achievement of the underlying task are not necessarily

present.

The implications of these observations for the design of a natural language understanding
systemn are many. For example, the existence of subdialogues as cohesive units requires a sys-
tem that can recognize the boundaries of such units. Furthermore, a system should be able to
discriminate between certain kinds of subdialogues, since subdialogues corresponding to sub-
tasks, meta-discussions of subtasks, and interruptions unconnected to subtasks relate to the pre-
vious discourse in different ways. For example, depending on the context some relationships
between subdialogues are more expected than others. Fun.hermoré. the interpretation of utter-

ances depends on the relationship inferred.
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The data analysis also indicates what kinds of knowledge an intelligent computer system |
\ will need to understand such dialogues. As Grosz [37] noted, recognition of a dialogue’s ':‘
discourse structure is necessary to explain a class of linguistic phenomena. Since the structure E
of task subdialogues corresponds to Lh:L execution structure of corresponding subtasks, “
knowledge regarding the structure of typical domain tasks is necessary. However, since in E
many of the dialogues agents do more than merely execute a plan, knowledge about higher :i'
level processes such as plan debugging will be useful. Finally, since any subdialogue may be
temporarily interrupted, structures for managing interruptions are necessary.
v 2.2.2. Sentence Fragments and Elliptical Utterances t
Each corpus of dialogues also contained sentence fragments or other elliptical utterances. ]
While in isolation such utterances containing missing words or phrases are syntactically incom- f. |
1;|ete, in the context of a discourse the missing entities can usually be recovered. For example, }
: in Dialogue 3 the missing portions of line (14) can be recovered using line (12). Thus, our .
g desired natural ianguage understanding system should be able to both mainlz;in and use por- \
tions of the previous dialogue.
Unfortunately, many types of elliptical utterances cannot be handled using only the con- .
\ tent of the previous dialogue. Consider analysis of utterances (1) and (15), the initial fragments ':'
: of Dialogues (1) and (4), respeétively. Since there is no preceding dialogue, to find the missing o
: phrases the system will need to draw upon an extra-linguistic context of knowledge about the ~
: world and likely goals of the speaker. In other words, if the train clerk knows that persons %:
: seeking information typically are boarding a train, meeting a train, or looking for a room in the
. station. "The eight-fifty to Montreal” can be understood by using these plans to provide the .
y missing information (in this case, knowing that to board a train an agent needs to know what E.
\ I
' Ay

A gate to go to). Such analysis is also useful for understanding non-elliptical utterances. Since

the system not only knows what was said but also why, recognition of how an utterance con-
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nects with a speaker’s underlying goal provides a deeper level of understanding.

While the use of planning Ynowledge in understanding utterances (1) and (15) (or any
utterance in isolation) is not a discourse level phenomena., it is similar in that understanding
involves connecting an utterance to some p;eviou‘s ;:ontext. in this case an extra-linguistic con-
text. Thus. connecting an utterance to a context of speaker goals can usually provide an alter-
native 1o solely linguistic explanations of discourse level ellipsis. This suggests that a natural
language system should be able to use and coordinate both linguistic and plan-based analyses
of the same phenomena. Furthermore, plan-based analyses appear to be able to explain
discourse level examples that are problematic for the linguistic method. Recall "How about
Wednesday” in Dialogue (4), where the entity that "Wednesday" replaces is not explicitly men-

tioned in the previous dialogue.

2.2.3. Surface Linguistic Phenomena

Many researchers have noted that surface linguistic phenomena, e.g. the particular lexical
items and syntactic structures used in an utterance, explicitly signal the role of an utterance
with respect to the overall discourse. It has been shown that choice of referring expressions (for
example pronouns and definite noun phrases) varies depending on the status of the subdialo-
gue containing the entity. Also, many seemingly insignificant words and phrases not only mark
transitions between subdialogues, but also indicate the relationships between such subdialo-
gues. For example, consider the use of "OK" in Dialogues 1 and 2, "how about” in Dialogues

3 and 4, and "by the way” in the following dialogue fragment.

L: The eggplant has been sliced. It’s (good) that you advised cutting by judgement in-
stead of absolute directions. We got a monster eggplant that split into ten sec-
tions. By the way, the eggplant is turning brown. The traditional method for
preventing oxidation is to sprinkle the food with lemon juice. Do you recom-
mend doing so? .

M: I'm not sure that it's necessary since we're going to use it soon. [f you would like
to. you can, but the lemon taste may carry over.

L: [ dig. Well skip it then.
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"By the way” typically indicates not only the beginning of a new subdialogue , but also that
the subdialogue temporarily interrupts the subdialogue structure corresponding to the prepara-
tion of the eggplant recipe as guided by the consuitant. With respect to the design of a natural
language system, these results indicate that 3ysteris should be able to use such discourse clues.
However, since such clues are not always present (for example, no clue precedes the interrupt-
ing utterance (8) in Dialogue 2). systems should also be able to proceed as best they can

without them. Thus, we again see the need for linguistic as well as extra-linguistic knowledge.

2.2.4. Multi-Sentential Utterances

Often a speaker will express a single thought via a set of utterances rather than a single
utterance. For example, the first three utterances of Dialogue 3 could easily have been
replaced with the single utterance "Could you mount tapel for me with no ring please?” Just
as subdialogues needed to be related to one ‘another in various ways, sentences in multi-
sentential utterances (i.e. sentences within a subdialogue) will need to be related. For example,
to understand "It’s tapel” in Dialogue 3 a system will need to be able to relate it to the previ-
ous discourse and/or plan context provided by "Could you mount a magtape for me?" A
desirable system design would be one that uses the same structures and mechanisms to recog-

nize the previously discussed relationships.

3. A Computational Theory of Dialogue Understanding

As mentioned above, the results of the discourse analysis along with constraints of com-
putational plausibility both guided and later supported the design of the theory presented in
this dissertation. Previous work in the area had generally concentrated on either (1) the com-

putational recognition and use of plan structures for understanding single sentences and dialo-

gues without interruptions, or (2) linguistic explanations of interruptions and other discourse

phenomena often dependent on computational processes that were unrealisticaily presupposed.

[n contrast, this work was based on the desire to use both planning and tinguistic knowledge
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during the process of dialogue understanding {4,56]. The result was an investigation that con-

-
-

cerned itself primarily with extension of the results of the plan-based work using issues and

tractable results of the more linguistic work. ’

- .-
-

The initial phase of this research [57] focused on the clarification subdialogues and sur-
5 face phenomena of the train domain, and resulted in the hypothesis that an important kind of
interrupting relationship between utterances could be recognized by extending the system's -

knowledge regarding specific plans to include knowledge about things people could do with

&

such plans (e.g. introduce them, execute them, clarify them, debug them...). Yet, as in the

linguistic theories, surface phenomena could still be used to guide the recognition of underly-

P A A

ing dialogue (here plan) structures, and conversely recognized structures could be used to

(A

explain other surface phenomena. In other words, a way of coordinating alternative linguistic

LR S Sy §

2

a.nd plan-based explanations of the examined set of discourse phenomena was developed. The
initial theory was then applied to the other dialogues (for example, see [58]). While some of

the particular details needed to be generalized. .the basic structures and algorithms held. In

A"

particular. the scope of the theory was extended to include dialogues with (and without)

LI T )
LN

ey sy

several kinds of interruptions. Also, it turned out that ellipsis and the (very limited) number of

multi-sentential utterances could be analyzed without recourse to any new theoretical mechan-

A

']
e O S

isms. The final resuit was the formal theory and partial implementation of a system capable of

‘..\

understanding a set of discourse level phenomena in many dialogue variants.

Figure 1.1 presents the components and interactions that would be found in such a sys- ]

tafe"s"a" a2 a

tem. For every utterance, the system’s processing would consist of both linguistic and plan-
based analyses of discourse level phenomena. [n other words. the design of the system is
based on two major assumptions:

(1) People form and execute plans containing linguistic (as well as non-liaguistic) actions, o
plans that other agents can infer from observation of these actions. :

R L L,

-

(2) The structure of dialogues and the use of surface linguistic phenomena are highly
. rule-governed.
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PLAN ANALYSIS LINGUISTIC ANALYSIS
Plan Structures ’ Clue Words
domain plans —= | Local Discourse Phenomena
meta-plans —
plan stack pronouns
ellipsis

[ncremental Plan Recognition

plan-based heuristics
coherence heuristics

— =

Preliminary Syntax and Semantics

Figure 1.1: System Overview

The scope of the work is constrained by also assuming that agents will cooperate and share the

same knowledge.

The input to such a system is a syntactic and semantic analysis. typical of the kind of out-
put produced by existing parsing systems. As the dialogue progresses, the system performs the
necessary plan analysis (formalized in the incremental plan recognition algorithm) using
knowledge about the structure of typical plans (domain plans), a preliminary set of things peo-
ple do with plans (meta-plans), and a previous dialogue con:ext consisting of the set of previ-
ously recognized executing and interrupted plans and their relationships (maintained via the
plan stack). The recognition algorithm is a search process guided by both rules of rational
planning behavior and rules about the structure of the dialogues in terms of relationships
between the higher-level (meta) pianning processes that underly them. Finally. clue words
present in the utterance as well as typical linguistic analyses of local discourse phenomena are

also input to the plan recognizer and used to constrain its default plan-based search process.

Note. however. that if such linguistic analyses are not available, plan recognition can still
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proceed, and in fact can be used to provide alternative plan-based analyses of the local linguis-

tic phenomena.

As we will see, the behavior just described is fully specified by the theory. The imple-
mentation, however, is only partial and co;resp(;nas to the major contribution (i.e. the plan
recognition aspects) of the theory. In particular, the current implementation illustrates the
recognition of a stack of executing and interrupted domain and meta-plans from a representa-
tion of the parse of "The eight-fifty to Montreal?" The implementation also addresses two
difficult issues of knowledge representation (related to equality reasoning) inherent in any plan
recognition task. Finally, while the parser and linguistic analyses are simulated in the current

system, actual implementations demonstrating such capabilities do exist either at Rochester or

other institutions.

Figure 1.2 illustrates (at a very high-level) how the theory is used to simulate a system
processing a dialogue by constructing and manipulating a stack of recognized user and system
plans and meta-plans. For example, given an input such as (the syntactic and semantic analysis
of) the noun phrase “The 8:50 to Montreal,” the system, here taking the role of the clerk, will
use its knowledge regarding domain plans. meta-plans, the previous discourse (currentdy an
empty stack), and the plan recognition algorithm to hypothesize that the passenger is introduc-
ing a plan for the system to clarify the passenger’s domain plan to board the 8:50 to Montreal.
The system performs this analysis by recognizing the various plans and their relationships, then
placing them on the stack. Each meta-plan on the stack refers to the plan below it, with the
domain dependent task plan at the bottom. The top plan is currently executing and the others

will be resumed when the plan immediately above is popped. The system will then manipulate

this stack and generate an appropriate response: the resulting stack provides a context for

understanding the next user utterance. To understand "Where is it?" the system will, as
before. analyze the passenger’s utterance as an introduction of a plan for the system to clarify a

plan. However, in this case the clarificaton is with respect to the previously executed system
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passenger INTRODUCES |
clerk CLARIFIES o

passenger BOARDS train [

P: The 8:50 to Montreal?

passenger INTRODUCES |
clerk CLARIFIES o
clerk CLARIFIES o

passenger BOARDS train [~

P: Where is it?

passenger BOARDS train

P: OK. Thank you.

17

clerk CLARIFIES

.........

passenger BOARDS train |
C: 8:50 to Montreal. Gate 7.
clerk CLARIFIES |
clerk CLARIFIES S
passenger BOARDS train [

C: Down this way to your left.

Second one on the left.

Figure 1.2: Example

clarification rather than a new passenger domain plan. In other words, once the dialogue is in

progress the system prefers an interpretation that coheres with the previous dialogue. Finally,

understanding of the last passenger utterance shows how the system can use linguistic clues to

guide its default (plan-based) manipulations of the plan stack.

4. Dissertation Overview

The next two chapters will present the structures and algorithms of the theory in detail.

Chapter 2 will present the plan-based aspects, while Chapter 3 will show how various insights

in the area of discourse analysis have cither been reformulated in or interfaced to this frame-
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work.

Chapters 4 and S will show how the theory can actually be used to process the four
examples given at the beginning of this chapter. Chapter 4 will concentrate on the recognition
of interrupting subdialogues (both clarification and corrections), while Chapter 5 will concen-
trate on the use of another type of interrupting subdialogue to explain sentence fragments,
linguistic, and extra-linguistic elliptical utterances. While the examples are quite detailed and
thus somewhat tedious, to fully understand the theory the reader should at least comprehend

the first example of Chapter 4.

Chapter 6 will discuss technical issues relating to the implementation. In particular, the
chapter will concentrate on the discussion of two modes of reasoning that many current
knowledge representation systems lack but all plan recognition systems need. The chapter will
simw how the current implementation of the plan recognition process for "The eight-fifty to
Montreal?" addresses these (as well as the plan recognition) issues. For example, the chapter
will show how the process of constraint satisfaction can be used to implement the recognition
of object plans from meta-plans. Finally, the chapter will discuss the significance of the imple-
mentation with respect to the theory. We will see that unlike many discourse models, all com-
putational processes required by the theory have either been implemented in this system or
simulated here and implemented elsewhere. Chapter 6 can be skipped by readers not con-

cerned with either issues of implementation or knowledge representation.

Finally, Chapter 7 will place this work into the context of the relevant literature, while

Chapter 8 will summarize and elaborate on future directions.
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Chapter 2

- .-

Plan Analysis

1. Background

Plans, sequences of actions that achieve a set of goals, are a central concept in artificial
i.ntelligence research. Early work was in the context of robot problem solving systems (Newell
and Simon [67], Fikes and Nilsson [30]) and involved generating plans, linear sequences of exe-
cutable robot actions, given an initiai world state, a goal state, and a library of actions a robot
could perform. Actions were formally modeled as operators that changed one state of the
world into another; mechanisms were developed for searching through state spaces to find
operator sequences connecting initial and goal states. Later work extended the framework to
include hierarchical (Sacerdoti {79.80]) and non-linear (Sacerdoti [80]. Tate [92]) planning. By
allowing plans to be developed level by level, i.e. hierarchically, low level details could be post-
poned. Plans at each level were thus shorter and more manageable. This work was also in the

context of a robot generating plans for a toy "blocks world” domain.

Many artificial intelligence researchers have used such robot planning frameworks to
address a wide variety of issues in the area of natural language. Bruce (14} suggested and
Allen, Cohen. and Perrault {3.22] pursued a plan-based approach to conversation based on
insights from the philosophy of language (Austin {9], Searle [84], Grice [35]). The work in phi-

losophy suggested viewing utterances as speech acts, actions performed by speakers to achieve
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intended effects. Understanding an utterance thus involved both constructing a literal interpre-
tation as well as recognizing underlying intentions. Allen, Cohen and Perrault, adopting this
purposeful view of language, developed computational models for recognizing and generating
speech acts based heavily upon the work iff robot problem solving. For example, speech acts
were modeled as action operators in a language planning system: understanding a speech act
involved recognizing the speakers intentions (i.e. plan). Their theory produced a new view of
question-answering conversations, and led to systems that could provide more information than

required as well as understand indirect speech acts and sentence fragments.

Other plan-based work has been concerned with issues of discourse context, i.e. relating
the current utterance to the previous utterances in the conversation. For example, goal analysis
has been used to relate sentences processed in story-understanding systems. Schank [82] noted
that stereotypical stories could be understood by the use of a script, a data structure for
representing such stereotypical situations. Scripts provided expectations in the form of slots,
which were filled in during story understanding. Wilensky {96] generalized this idea by using a
more flexible intentional (i.e. plan-based) analysis. By reasoning about the story situations in
terms of interacting goals and plans of the characters, his system could understand novel (as
well as stereotypical) goal-based stories. With respect to conversational analysis, Grosz [37]
noted that in task-oriented dialogues the topic usually follows the task (i.e. plan) structure. She
used this result to process various linguistic phenomena exhibited in the dialogues. such as
definite noun phrases and elliptical utterances. Sidner and [srael [86] and Carberry [15] have
used similar intuitions to recognize multi-step plans. Carberry used the plan context to help
track the changing task goals of a speaker during information-seeking dialogues. Similarly,
Sidner and [srael extended Allen [3] by using plan knowledge to provide a context. They also
suggested using the framework to recognize interruptions of faulty plans. This problem of
when to ignore the expectations provided by discourse context. as in an interruption or change

of plan, has generally been ignored. Sidner {90] begins to tackle the problem of interruptions
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in order to recognize when two or more plans underlie a discourse. Related to this issue is

" "N

how the actual phrasing of the utterance controls (whether to overrule or reinforce) the plan

recognition process. As will be seen in the next chapter, issues of interruptions and linguistic

e .

analysis have been of concern primarily outstde thie plan-based field.

' This chapter will present a new theory of plan recognition, one that will be able to sys-
tematically use (or ignore) the previous conversational context and thus handle a wide variety
of subdialogues. As will be seen, in addition to the standard domain-dependent knowledge of
task plans, some knowledge about the planning process itself will be introduced. This will be
X done via meta-plans. domain-independent plans that refer to the state of other plans. During a

dialogue, the theory will specify how to incrementally recognize instantiations of such plans
. and put them on a stack. each meta-plan on the stack referring to the plan below it. with the

domain-dependent task plan at the bottom. In the next chapter we will see that the manipula-

tion of this stack of plans is similar to the manipulation of topic hierarchies that arise in
’ ' discourse models. In that chapter we will also see how the plan recognizer can use some of the

results of the more linguistic models.
2. Plan Structures

2.1. Models of Plans

In a plan-based approach to language understanding, an utterance is considered under-
stood when it is related to some underlying plan of the speaker. The hearer must thus bring o
the understanding task some knowledge about typical speaker plans. A library of plan schemas
will be used to represent this type of general knowledge. ( Plan instantiations are formed from

such general schemas by giving values to the schema parameters.)

Plan schemas can be used for both plan generation and plan recognition. For example. a

planning system would use these schemas in the same way it would have used STRIPS action
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descriptions [30], i.e.. to generate sequences of matched and instantiated schemas to achieve
some goal. Once generated. the complex plan instantiation is executed much as one would run
a program. A plan recognizer, on the other hand, will use the plan schemas to recognize the
plan instantiation that produced an executed action. In particular, the recognizer will be con-
cerned with recognizing plan instantiations from actions executed as part of a dialogue. Plan
will be used loosely to refer to both plan schemas and plan instantiations. The intended mean-

ing should always be clear from the context.

Every plan has a header. a parameterized action description that names the plan. The
paramelers of a plan are the parameters in the header. As usual in many models of planning
(for example, STRIPS [30]), action descriptions are represented as operators on the planner's
world model and are defined in terms of prerequisites and effects. Prerequisites are conditions
fhat need to hold (or be made to hold) in the world model before the action operator can actu-
ally be applied. Effects are statements that are asserted into the world model after the action
has been successfully executed. By assuming that all other aspects of the planner’s world model
remain unchanged. the frame problem [63] can be suppressed. Since the particular plans that
will be used in this work have prerequisites that aren't falsified, and so on, it will not be neces-

sary to have effects that delete statements from the world model, as in STRIPS.

Action descriptions may also have decompositions, which enable hierarchical planning
(Sacerdoti [80]). Although the action description of the header may be usefully thought of at
one level of abstraction as a single action achieving a goal, such an action might not be execut-
able, i.e. it might be an abstract as opposed to primitive action. Abstract actions are in actuality
composed of primitive actions and possibly othe. abstract action descriptions (i.e.. other plans).
Thus. decompositions may be sequences of prnimitive actions. abstract acuons, goals to be
achieved (action sequences to be dynamicaily constructed) or a mixture. Note that the usual

distinctions between the terms “action” and “plan” have hecome blurred. [n STRIPS. (primi-

tive) actions were organized nto plans. Here. as m ABSTRIPS {79] and NOAH (80]. plans
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(abstract or primitive actions) are organized into larger plans. It is useful to precompile well-
defined plans for a goal as abstract actions to capture their generality as components within

higher level plans.

- >

A few things atypical of such planni;lg models should also be noted. Associated with
each plan is a set of constraints. These are similar to prerequisites, except that the planner

never attempts to achieve a constraint if it is false. Thus, any action whose constraints are not
satisfied in some context will not be applicable in that context.! Also. plans may involve both
physical and linguistic actions. In a typical plan involving a conversation, for example, agents
often take turns executing actions corresponding to the utterances in the conversation. Finally,
plans may contain actions with both the system and the user as possible agents. Since both
agents are assumed to be cooperating, there is no reason why the user can't construct a plan
Llhal depends on the system’s help.

Figure 2.1 illustrates a very simple plan schema with header "BUY-TICKET (passenger.

[T

clerk, ticket)” and parameters "passenger.” “clerk” and "ticket.” An instantiation of such a
plan schema might be generated and then executed to change a world in which a passenger
doesn’t have a ticket into one where he or she does. Before the plan instantiation can be per-
formed. the prerequisites indicate that the passenger must have (or construct a subplan to
obtain) enough money to pay for a ticket. Similarly, the constraints indicate that the clerk
must be a ticket-seller. However, unlike a prerequisite, if this condition is not already true
then the ticket cannot be bought from this particular cierk. In other words. it doesn’'t make
sense to treat this condition as a goal to be achieved since it is beyond the passenger’s capabili-
ties. Assuming that these conditions are met, buying a ticket can then be performed by having

the passenger first pay the clerk. followed by the clerk giving the passenger the ticket. The

world model is then updated to indicate that the passenger now has the ticket and the clerk

"These constraints should not be confused with the constraints of Stefik [91). which are dynamically formulated
dunng hierarchical plan generauon and represent the interactions between subproblems.
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now has the money.

HEADER: BUY-TICKET(passenger, clerk, ticket)
PREREQUISITE: HAS(passenger, price(ticket))

DECOMPOSITION: PAY(passenger, price(ticket))
GIVE(clerk, passenger, ticket)

EFFECTS: HAS(passenger, ticket)
HAS(clerk, price(ticket))

CONSTRAINT: TICKET-SELLER(clerk)

Figure 2.1: A Plan Schema

When the implementation is presented, we shall see how such schemas are axiomatized

using a typed horn clause logic [6], where types are organized into hierarchies as commonly

- found in semantic network formalisms. The naming of the parameters in the schemas will

reflect such type restrictions. Thus, when an instance of the schema in Figure 2.1 is created,
passenger and clerk are restricted to people (or systems) and ticket is restricted to tickets. We
will also see how the representation of plan schemas as described in this chapter glosses over
difficult issues of knowledge representation, and thus does not exactly correspond to the
representation of schemas in the implementation. Other assumptions that underlie the above

representation follow. [n general, relaxation of any of the assumptions produces a topic worthy

of its own research effort.

Although a STRIPS based plan representation is typical, there are ultimately several limi-
tations. For example, the only temporal constraint on a plan schema is an implicit linear ord-
ering of the actions in the decomposition. Thus. in Figure 2.1. the clerk must be paid before

the ticket is given. [n NOAH [80] a representation enabling non-linear planning was

developed. More recently, Allen [7] has developed a much more general theory of action and
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time useful for a plan generation system (Allen and Koomen {5]). Regardless of the time issue,
a STRIPS based representation system will also prove inadequate for certain types of plan
inference. Pollack [73] is developing a more expressive model that will enable reasoning about

plans that an égent niight have even though they ire unrealizable.

All issues involving non-mutual beliefs of agents will be ignored. [n other words, it is
assumed that what agent A believes that agent B believes is equivalent to what agent B
believes. For example, all participants in the dialogue share the same plan library; knowledge
about what plans exist as well as how they are performed is mutually believed by ail. While
greatly simplifying representation issues, this assumption would need to be relaxed when
understanding dialogues containing deceit (Bruce {13]) or various types of miscommunication

(as discussed in Chapter 8).

2.1.1. Domain Plan Schemas

Domaz:n ))Ian schemas represent typical tasks that might be performed i.n a given domain.
Such knowledge has been the mainstay of previous plan-based works. Figure 2.2 presents a
subset of the relevant domain plan schemas necessary for processing the dialogues in the
Toronto train station. Although the formalizations are obviously incomplete, they will be

sufficient for the purposes of this dissertation.

Since, as mentioned above, the naming conventions in the figures presume an underlying
type hierarchy, it will be useful to briefly discuss the particular type hierarchy used before dis-
cussing the figures in depth. Obviously one of the types needed will be a train type, defined as
follows:

(subtype TrainType PhysicalObjectType
(gate LocationType)
(station CityType)
(time TimeType))

Note that the representation permits complex structured types, i.e. frame-like structures {66].
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HEADER: GOTO(agent, location, time) ¢
EFFECT: AT(agent, location,.time)
N HEADER: MEET(agent, arriveTrain) N
4 - d
DECOMPOSITION: GOTO(agent, gate(arriveTrain), time(arriveTrain)) -3
HEADER: BOARD(agent, departTrain) =
5 DECOMPOSITION: GOTO(agent, gate(departTrain), time{departTrain)) ? '
A GETON(agent, departTrain) -
- HEADER: TAKE-TRAIN-TRIP(agent, departTrain, destination)
N DECOMPOSITION: SELECT-TRAIN(agent, departTrain, departTrainSet) <
: BUY-TICKET(agent, clerk, ticket) )
. BOARD(agent, departTrain) o
;. . CONSTRAINTS: EQUAL(destination, station(departTrain)) :'(
: EQUAL(destination, station{departTrainSet)) -
¢ EQUAL(departTrain. object(ticket))
Figure 2.2: Domain Plan Schemas for the Train Domain
. by allowing a set of distinguished function names called roles. here “gate,” "station” and -
X “time.” The role values are type restricted and can be accessed functionally. Thus Ry
1 e
. "gate(trainl),” where trainl is an instance of type TrainType, refers to the specific gate filling Z-‘
] -
N the gate role. »
Trains will be further decomposed into arriving and departing trains. More formally, ;
3 (subtype ArriveTrainType TrainType) A
(subtype DepartTrainType TrainType)
by
As common in semantic network hierarchies, subtypes inherit the properties of their super- ~
) types: thus, these two types inherit the three roles of TrainType. Finally, implicit in these :i:
types is the fact that the information booth is in Toronto. [t is assumed that gates and times '\
refer to Toronto, while the station refers to the other city that the train is either going to or A
coming from. :E
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S
o
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The first plan in Figure 2.2 summarizes a simple plan schema with header
"GOTO(agent location,time),” with parameters "agent,” "location,” and "time,”" and with the
effect "AT(agent location,time).” The header specifies a primitive action so there is no decom-
position. The prerequisites and constraints ‘are not shown. Throughout the dissertation, only

the parts of the plan schemas needed for the examples will be presented.

The second plan summarizes a plan schema for the abstract action MEET, which is exe-
cuted by performing a constrained version of the primitive action GOTO. As mentioned
above, constraining the type of train to be met to arriving trains, defined as trains going to
Toronto, captureé the knowledge that the information booth, and hence the agents, are in the
Toronto station. Thus this plan schema would best be described in English as "meeting a train
at a gate in the railroad station of Toronto” rather than as the general action of "meeting a
train.”

The BOARD plan schema is similar to MEET, and is one step of the complex plan
schema TAKE-TRAIN-TRIP (again, imptlicitly from Toronto). The first constraint of TAKE-
TRAIN-TRIP captures the fact that the train taken, i.e. departTrain, must have as the value of
its station role destination. The second constraint indicates that this is also the only restriction
on the the set of possible candidates for departTrain used by SELECT-TRAIN. The third con-
straint indicates that the ticket purchased will be used to take depar(Train. The specification of
the other plans needed in this domain, e.g. plans to select a particular train from a set of possi-
bilities, plans to buy tickets, plans to ask directions, etc., are not needed to process the exam-

ples chosen.

Since domain plans are domain dependent, participation in the KL-ONE or tape dialo-
gues involves reloading the initial plan library with an appropriate set of domain plans. The

actual plan schemas used in those domains will be given with the examples in later chapters.
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2.1.2. Meta-Plan Schemas ::
' Plans about plans, or meta-plans, deal with introducing plans, executing plans, specifying )
parts of plans., debugging plans, abandoning plans, etc., independently of any domain. )
‘ Although meta-plans can refer to both dc;main‘;;lans or other meta-plans, as we shail see &
‘ domain plans can only be accessed and manipulated via meta plans. ',.
W,
i Except for the fact that they refer to other plans (i.e. they take other plans as arguments), s
meta-plan schemas are identical in structure to domain plan schemas. However, to allow these f
: plans about plans, a vocabulary for referring to and describing plans will be needed. Develop- '.:
: ing a fully adequate formal model would be a large research effort in its own right. The -
! development so far is meant to be suggestive of what is needed, and is specific enough for the -
E preliminary implementation. g
! For example, to talk about the structure of plans a predicate PARAMETER (P, plan) will .
3 be assumed, which asserts that P is a parameter of the specified plan. A predicate STEP "
: (action, plan) will also be used, to assert that the specified action is a step in the decomposition i
of the specified plan. The rest of the predicates will be introduced as they are needed. _ :
' Plans are not the only objects whose structure needs to be examined. In addition, there E
will be a need to refer to parameters of actions and propositions (for example, equality asser- ’
tions) as well. Thus, the logic used will need to admit plans. actions, and propositions as d
; objects. The PARAMETER predicate will be used to make assertions about the structure of all & ‘
| these types of objects. ; \
\
The first two examples of meta-plans are given in Figure 2.3, INTRODUCE-PLAN .
takes a plan_ of the speaker that involves the hearer and presents it to the hearer, who is :?.
assumed to be cooperative. The way of introducing a plan given in the decomposition is to ,:.
request one of the actions in the plan for which the hearer is the agent (the constraints). The f
definitions of speech acts such as REQUEST will be provided in the next section. Since the :
K
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3
. hearer is cooperative, he or she will then adopt as a goal the joint plan containing the action :
) 75{
(the first effect). The NEXT predicate (the second effect) informally means that the action so

marked will be the next action to be executed in the plan. Similarly, a predicate LAST will be

. used to mark the action most recently eXecutéd. These predicates encode aspects of the :
discourse analysis and will be explained further in the next chapter. :'.’
' . >
2 S
HEADER: INTRODUCE-PLAN(speaker, hearer, action, plan)
y DECOMPOSITION:  REQUEST(speaker, hearer, action) e
. EFFECTS: WANT (hearer, plan) :C ‘
¥ NEXT/(action, plan) :..
CONSTRAINTS: STEP(action, plan) '
. AGENT(action, hearer) v
B e 8880880000088 00000800tiEetatNesetttorttieentnnanIEett tIasseaneeeeetesettteasenssRtEResEttRonnonnanS .(
» .'
: HEADER: CONTINUE-PLAN(speaker, hearer, step, nextstep, plan) %
4 PREREQUISITES: ~ LAST(step, plan) . e
- WANT(hearer, plan) .
DECOMPOSITION:  REQUEST(speaker, hearer, nextst2p) ND
EFFECT: NEXT(nextstep, plan) :'_:
CONSTRAINTS: STEP(step, plan) <
STEP(nextstep, plan) o
AFTER(step, nextstep) %
AGENT(nextstep, hearer)
: CANDO(hearer, nextstep, plan) :,
g :
Figure 2.3: The Default Meta-Plans -
4 Since this work is concerned with the development and use of meta-plans as a way of o
' explaining conversational phenomena. it will be assumed that all meta-plans will be achieved :::
' via verbal communication with another agent. For example, other ways of introducing a plan, -
L
such as via a written contract, will be ignored throughout. -:.
s
. k*
The second meta-plan. CONTINUE-PLAN, takes an already introduced plan defined by ;_
the WANT prerequisite and moves execution to the next step. One way this may be done is
L] ‘-
. by asking (the REQUEST in the decomposition) the hearer to perform the next step. assuming N
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of course that the step is something the hearer actually can perform. This is captured by the
decomposition together with the constraints. The effect will be that the portion of the plan to
be executed is updated. This will be done with the predicates NEXT and LAST, which as

mentioned above will also be useful for intefacting with the discourse analysis.

As an example, consider an analysis of the following KL-ONE editor dialogue fragment
using the above meta plans. (All such excerpts will come from the naturally occurring data

unless otherwise noted.)

User: Good morning. Please show the concept Person.
System: Drawing...Ok.

User: Add a role called hobby.

System: A Ok.

User: Make the vr be Pastime.

System: Alright

User: Make a subc of Pastime called Sport...

Assume an edit plan involves accessing then performing a sequence of editing actions on a
pre-existing concept. The first request of the user introduces a plan to edit the KL-ONE con-
cept person. Each successive user utterance continues through the plan by requesting the sys-
tem to perform the various editing actions. The first user utterance would thus correspond to
INTRODUCE-PLAN (User, System, show the concept Person, edit plan). Since one effect of
this INTRODUCE-PLAN is that the system adopts the plan, the system responds by executing
the appropriate action in the plan, i.e. by showing the concept Person. The user's next utter-
ance can then be recognized as CONTINUE-PLAN (User, System, show the concept Person,

add hobby role to Person, edit plan), and so on for the other user utterances.

The above fragment is typical of the class of dialogues currently considered in plan-based

approaches to language understanding. Systems are usually limited to discussion of one task.
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with subdialogues corresponding only to execution of the subtasks. In terms of the proposed

meta-plans, such dialogues would be modelled by introducing, then continuing through, a task

Rt
£ plan. The two meta-plans thus make explicit some underlying mechanisms of the earlier '
$,

works, = \' ;
1]
+ l‘
3 More importantly, these two meta-plans are part of a larger set of meta-plans enabling a Y
uniform treatment of a wide range of subdialogues. As the data analysis illustrated, dialogues °
reflecting smooth plan execution are almost an exception rather than the norm. Instead, subdi- -
‘? alogues often correspond to interruptions due to problems that arise during plan execution. A “
. response that a speaker predicts will be easily understood might in actuality need clarification. ::‘
Or, the system might perform an action based on incorrect assumptions, causing parts of the =
\ incorrectly executed plan to later be redone. Introductions, plan continuations, or even interr- ';'_
¢ -
i uptions can themselves be interrupted. The remainder of the meta-plans were developed to 0
. formalize some of these ways in which the expected domain and meta plan execution is inter- é
¥
rupted. .
[ ’
! Figure 2.4 presents an example clarification meta-plan, IDENTIFY-PARAMETER, that s
helps identify a parameter that appears in another plan. o
J ::.
4 HEADER: IDENTIFY-PARAMETER(speaker, hearer, parameter, action, plan) N
DECOMPOSITION:  INFORMREF(speaker, hearer, term, proposition)
EFFECTS: NEXT(action, plan) &
KNOW-PARAMETER(hearer, parameter, action, plan) s
CONSTRAINTS: PARAMETER(parameter, action) X
STEP(action. plan) ;.
PARAMETER(parameter, proposition) -
. PARAMETER(term, proposition) -y
' WANT(hearer, plan)

W,
» l‘* g
. <
" Figure 2.4: A Clarification Meta-Plan
4 g :
‘ A
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IDENTIFY-PARAMETER provides a suitable description of a parameter in the plan referred
to that enables the hearer to execute an action in the decomposition of the plan. It is per-
formed by describing the parameter via some description, using a proposition relating the
paraméter to the new description (INFORMEF will be further explained in the section on
speech acts). It has several constraints on the relationship between the meta-plan and the plan
it concerns, namely that parameter must be a parameter of an action that must be in the plan,
and that the describing proposition will also involve the specification of term. Finally, the plan
being clarified must already be a goal. The effect of this plan is the predicate KNOW-
PARAMETER (agent, parameter, action. plan), defined to mean that agent has a description of
parameter that is informative enough to allow agent to execute action in plan, all other things
being equal. While the axiomatization of KNOW-PARAMETER is problematic, it shall only

Be used in simple cases where its use is straightforward.

For example, in the _following dialogue fragment the first user utterance.introduces a
domain plan involving mounting tapes, i.e. INTRODUCE-PLAN (User, System. mount tapeS.
mount tapes).

User:  Can [ get tapeS on a drive?

System: Write enabled?

User: No. Also, while you're up. can [ get tape4 without write enable?
However, since the system does not know whether the tape should be write enabled, the
expected execution of the action is interrupted for initiation of a user clarification, i.e.
INTRODUCE-PLAN (System, User, IDENTIFY-PARAMETER (User, System, read-only or
write-enabled, mount tape5. mount tapes). clarification plan). The user responds with the
[DENTIFY-PARAMETER, instantiating and executing its decomposition with INFORMREF
(User. System, no write-enable, the mounting of tape5 is not wri[é enabled), then resumes the
interrupted plan to mount tapes. Note that rest of the user's second utterance now provides

enough information to avoid a clarification.
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Figure 2.5 presents the last class of meta-plans, those that debug plans that did not exe-

cute as expected.

-

HEADER: CORRECT-PLAN(speaker, hearer, laststep, newstep, nextstep, plan)

PREREQUISITES: WANT(hearer, plan)
LAST(laststep, plan)

DECOMPOSITION-1: achieve WANT(hearer, newstep)
DECOMPOSITION-2: achieve WANT(hearer, nextstep)

EFFECTS: STEP(newstep, plan)
AFTER(laststep, newstep)
AFTER(newstep, nextstep)
NEXT(newstep, plan)

CONSTRAINTS: STEP(laststep, plan)
STEP(nextstep, plan)
AFTER(laststep, nextstep)
AGENT(newstep, hearer)
“CANDO(speaker, nextstep, plan)
MODIFIES(newstep, laststep)
ENABLES(newstep, nextstep)

%

.
@

MODIFY-PLAN(speaker,hearer, change, changee,
newAction, oldAction, oldPlan, newPlan)

PREREQUISITE: WANT (hearer, oldPlan)
DECOMPOSITION: REQUEST(speaker, hearer, newAction)

EFFECTS: POP(CLOSURE(oldPlan))
NEXT(newAction)

CONSTRAINTS: PARAMETER(oldAction, changee) "EQUAL(change, changee)
STEP(oldAction, oldPlan) REPLACE(stack, oldStack)
STEP(newAction, newPlan)
EQUAL(newAction, SUBST(change. changee, oldAction))
EQUAL(TYPE(change), TYPE(changee))

" e T

Figure 2.5: Debugging Meta-Plans

CORRECT-PLAN inserts a repair step into a pre-existing plan that would otherwise fail.

More specifically, CORRECT-PLAN takes a pre-existing plan having subparts that do not

interface as expected during execution: the plan thus needs to be modified by adding a new

goal to restore the expected interactions. The pre-existing plan has subparts laststep and
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nexistep, where laststep was supposed to enable the performance of nexistep, but in reality did
not. Thus the plan must be corrected by adding newstep to the executed plan, which enables
the performance of nextstep and thus of the rest of plan. As in INTRODUCE-P{LAN, the plan
to be corrected can be introduced by a REQUEST for an as yet to be performed step (here,
either nextstep or newstep). The effects and constraints capture the plan situation described
above and should be self-explanatory, with the following exceptions. MODIFIES (action2,
actionl) means that action? is a variant of actioni, for example the same action with different
parameters or a new action achieving the still required effects. ENABLES (actionl, action2)

meauis that the problematic preconditions of action2 are in the effects of action!.

As in the last KLONE-ED fragment, in the following fragment the user is also executing

an edit plan.

User:  Good. Now put a part role on robot toes whose VR is unlabelled and which is
superc’ed to physical objects, and under it put three generics labelled toe joints.
nail catchers, and toe padding. That'll finish this little bit.

System: Drawing (sigh)...OK.

User:  You forgot the cables.
In particular, the first utterance shown is a CONTINUE-PLAN (User, System, last User edit
action, System put a part role on robot toes.... User edit plan). However, since the system exe-
cutes the requested portion of the plan incorrectly (the goal of having the generics connected
to the toe parts via cables was unmet), the user must interrupt execution of the editing task to
correct the system. This is done via "You forgot the cables,” eg. CORRECT-PLAN (User,
System, System put a part role..., System add cables to result of previous put, next User edit

step. User edit plan).

Finally, the last meta-plan to be discussed is MODIFY-PLAN, which replaces an
incorrect plan with a modification of the plan. This is in contrast o0 CORRECT-PLAN, which
just augments the original plan. More specifically. a new action is constructed from an

incorrect action by replacing the filler of one of its parameters with a different value. A
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modified plan is then constructed and re-executed by replacing the old action with its
modification. These relationships are defined via the plan constraints. As in CORRECT-
PLAN, the prerequisites indicate that the plan to be debugged must already be a goal. One
way to perform this meta-plan is to requesiexecution of the modified action. The POP effect
and REPLACE constraint explicitly overrule the normal stack operations described in the next
sections. Informally, instead of returning to the interrupted plan we instead re-execute a

modification of this plan.

In the following fragment, the user's second utterance modifies the plan incorrectly exe-
cuted on Wednesday (reintroduced by the user’s first utterance).

User:  On Wednesday, [ created a rather lengthy listing on the line printer. [ hope it hasn't
been discarded. I neglected to ask anyone to hold it

System: It has been discarded.

User:  Okay. I'll do it again. Don't throw it away. I'll pick it up this afternoon.

More specifically, the user’'s second utterance is.recognized as achieving MODIFY-PLAN
(User, System. holding time of listing explicit, holding time of listing defaulted, today's create
lengthy listing, Wednesday’s create lengthy listing, plan using old listing, plan using new list-
ing).

While many other ways of interrupting normal plan exeﬁution could be developed, recog-
nition of the small set of meta-plans shown will be sufficient to understand several subdialogue

classes in all three domains.

2.2. The Plan Stack

" A plan stack will be used to monitor cxecution of a task plan and its various clarifications
and corrections. During a dialogue, a stack of executing and suspended plans is built and
maintained by the plan recognizer. each metwa-plan referring to the plan below it with the

domain-dependent task plan at the bottom and the currently executing plan at the top. The
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stack will thus encode the domain plan and various meta-plans introduced, their relationships
to one another, and knowledge about which plans are currently executing and which will later
be resumed. As will be seen in the next chapter, other models of discourse (e.g., Reichman
[76), Polanyi and Scha [71]) have shown that topic structure follows a stack-like discipline.
Within the plan stack, a single element corresponds to either a domain or meta-plan instantia-
tion structure. In earlier systems, traversal of one such structure (which could itself be

modeled with a stack (Grosz [37])) constituted the dialogue processing.

In this work, the stack of plans will always represent what the system believes is the state
of the joint plan. Because both agents may construct and execute these plans, however, at tinies
it will seem that the stack is not truly a stack. This occurs when the user acts and the system
has to recognize what sequence of planning and execution steps the user did. For example, if
the user popped the top plan, and executed a step in what is now the usei’s top plan, the sys-
tem would recognize this as executing a plan in the second from the top plan. This anomaly i
quickly resolved as the system can then pop its stack to bring the two agents’ views back into
synchronization. Thus, once the plan recognition process is completed, the observed action is

always in the plan that is on the top of the stack.

To rephrase this, plans are added and deleted according to the stack discipline. The plan
recognizer, however, is allowed to inspect the entire stack in order to recognize that the user
has popped the stack before the user executed the recognized action. Even when the system
believes the top plan has completed successfully, it cannot be popped before some ack-
nowledgement from the user, thus allowing for a clarification of the complete plan. The ack-
nowledgement could be explicit. but most often is implicit in that the user acts in such a way

that the system recognizes that it must pop the top plan.

The stack can thus be viewed as having a muxture of both suspended (partially executed)

and completed plans. At the top of the stack there is a set of plans (possibly null) that the

»

P

.« v -
»"»
a8

AN,

yyLan

-
- ey -

N

‘4 .'. S. .~.

v~
L

e e
Who e o
) <

l.l‘

’ .'l'.l"
st s

P A
[N U R

l"'

egea s e s
A.'l,‘, YL

&

1 e d
3

.
D




37

recognizer believes has been executed and completed. As just discussed, these plans cannot be
eliminated as a possible topic until the user acknowledges their successful completion. Below
these plans is at least one currently suspended plan. Each suspended plan will be resumed
when the one above it is popped. In the Ttase when there are no completed plans, the top
suspended plan is also believed to be executing. Thus, the top of the stack is either an execut-
ing or just-executed plan. The rest of the stack may contain other suspended or completed
plans. If the stack is empty, a task will either be introduced or has just been concluded. The

actual pushing and popping of plans will be dizcussed in the section on plan recognition.

As an example, a clarification subdialogue is modeled by a meta-plan structure that refers
to the plan that is the topic of the clarification. When a clarification plan is recognized. it is
pushed onto the stack. The previous top. the plan being clarified, is temporarily suspended.
When the clarification is complete and its success acknowledged, the stack is popped and

resumption of the previous plan is recognized.

For examplie. consider the continuation of an earlier dialogue fragment, the fragment

illustrating the INTRODUCE and CONTINUE meta-plans in the last section.

1) User: Make a subc of Pastime called Sport.

2) System: OK.

3) User: Make an iconcept of Sport called Golf.

4) System: OK.

5) User: Is there a concept called mailing-address or something like that?

6) System: There is no concept "mailing-address.” What do you mean by “or some-
thing like that?”

7) User: Anything that partially matches spelling of the concept name given or that
identfies the concept indirecly via some other concept.

8) System: There is a concept called Address. Is that of help?

Recall that at the point shown (utterances (1) and alsb (3)) the user is just continuing the previ-

ously introduced editing plan. With utterance (5) the user interrupts exccution of this editing
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to request a system clarification. This is necessary since to edit a concept the user has to be
able to uniquely identify the concept. With the first part of utterance (6) the system begins the
clarification, but then decides to suspend it to initiate another clarification subdialogue (regard-
ing the first request for clarification), as donie via the second part of utterance (6). In terms of
the stack, the initial clarification was pushed on top of (and then suspended) the user’s original
edit plan. Similarly, the second clarification was then pushed onto the first. The state of affairs
at this point is shown in Figure 2.6, where the top of the three element stack corresponds to

the top of the page.

clarification subdialogue-2
(executing) META-PLAN

What do you mean by
“or something like that?"

clarification subdialogue-1
(suspended) META-PLAN

Is there a concept called mailing-
address or something like that?

topic of clarification
(suspended) DOMAIN PLAN

edit concepts

Figure 2.6: A Clarification Plan Stack

With utterance (7) the user completes the second (but executing) clarification subdialogue.
The system can then pop the stack and complete the now resumed initial clarification subdialo-

gue (via utterance (8)). Finally, the stack could then be popped once more and the domain

plan resumed.

As mentioned above, in this work the stack will typicatly consist of a series of meta-plans.

each referring to the plan below it. with a domain dependent task plan at the bottom. This
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reflects the fact that in the data the majority of the interruptions refer to the previous topic.
~ whether it be the original domain plan or one of its interruptions. However, when there are

unrelated topics as in the following dialogue, a stack like the one in Figure 2.7 will be con-

~

-~ -

structed.

User: Can I get tape$ on a drive?

System: Write enabled?

User: No. Also, while you're up, can I get tape4 without write enable?
System: Ok...

User: Is archive being run more than once per week, yet?

System: No.

System: Ok, tapes$ is on drivel and taped is on drive 2 without write enable.

introduce
(meta-plan)

obtain information on archive
(domain plan)

continue
(meta-plan)

mount tapés
(domain plan)

Figure 2.7: An I[nterrupting Topic Change Stack

In other words, the third line continues execution of a clarified domain plan, which as indi-
cated by the fourth line will take some time. The user takes this opponuﬂity to initiate discus-
sion of an unrelated topic. This is the state of the stack shown. With the final system utter-
ances the interruption is concluded (the top 2 plans popped) and execution of the tape mount-

ing plan continued.
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! h
. A stack metaphor obviously is an idealization for naturally-occurring conversations. For pd
N
* N
example, interrupted topics are not always returned to. Consider the following fragment (the 5.'

continuation of Dialogue 2), where the user ignores the system'’s question: "

User: Is there a role on employee calle:i “retirement fund” or something like that?

System: No there isn't. What information are you trying to add? :-"
Y
User:  How about a role called "pension program” or “pension plan?” A

In terms of the plan recognition model, we shall see that while an interpretation that A
corresponds to the stack discipline is preferred to one that doesn’t, if no such choice exists the Q
non-stack-like behavior will be pursued. With respect to the above fragment, the system will b

= eventually have to pop the incomplete clarification subdialogue in order to understand the

A

user’s last utterance.

O IR
AN

As will be seen in the next chapter, the default stack mechanism can also be explicitly

®
| overruled by the particular phrasing of the dialogues. In cases like the above. phrases such as N
r. "never mind” could be used to signal non-resumption. Another type of divergence from the ,
\ T P..
stack metaphor occurs with resumption of topics previously popped from the stack (and thus o
2 considered as completed topics). Linguistic devices exist to signal such unexpected behavior, e
: for example prefacing an utterance with temporal phrases as in f::
d :
Yesterday, you mentioned that the recipe calls for scallions, but you didn't list them as an in- :
gredient today. {50]
.
e
) Thus. the default mode of plan recognition will prefer stack-like interpretations whenever '_;‘
% S
Y it has a choice, unless the surface linguistic phenomena explicitly indicate otherwise. However, ;
one type of non-stack-like behavior that the model will not be able to handle is illustrated by )
the following fragment. -
‘.
-
L: Hi M. Let's cook. <
M:  Right! And with gas' OK. here is a list of ingredients: o
1. Eggplant S
A
Q o
-~
-~
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2. Garlic
3. A small piece of ginger
4. Some hot peppers
5. Hoi sin sauce
Ok, any questions?

-

Hi, yes, there's one small thing that might cause trouble. We have ginger powder,
not real ginger.

I don't think they can really be substituted because the ginger is supposed to lend a
subtle flavor to the oil, but you can do without OK, no problem...

It's not a question of doing totally without. We have ginger powder.

The first thing to do is to peel the eggplant into about 8 lengthwise pieces and then
halve them.

OK, will do. Be back soon.
Right, but [ sorta think that ginger powder isn't the same as sliced ginger.
It’s obviously not Liebnizian identical to it, but I think it will do.

Let me know when you have finished with the eggplant. By the way, the idea is to
make the eggplant slices into bite size morsels. So use your judgement really.

Thanks for the tip. We were just wondering about that.

If you want to use ginger powder instead of real ginger, go right on ahead! I'l be
interested in the resuits.

The eggplant has been sliced...

In this fragment the discussion of the ginger powder versus the ginger pieces is interleaved
with the execution of the steps in the recipe. This could not be explained via a stack mechan-
ism except by continuously popping a topic (viewing it as finished) and then immediately
pushing (or reviving) it, which does not really capture the sense of multiple active topics.
While such dialogues are possible, they are fairly uncommon in the data. To many people

they also seem "ill-formed.”

3. Speech Acts

Speech act theory (Austin [9), Searle [84], Grice [35]) views utterances as actions that

achieve intended effects, rather than as statements that are either true or false. For example.

Austin noted that utterances such as "I christen this ship the Queen Nancy” actually change
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the state of the world, rather than just assert something that is true, as in “Grass is green.”
Searle expanded on this idea, categorizing the various types of speech acts and analyzing the
conditions under which they may be successfuily performed. Allen, Cohen and Perrault 3.22]
used a language planning system to compulationally formalize some of these ideas. This sec-
tion will present the definitions of the speech acts used for this work, based on the definitions

given in Allen and Perrault [3).
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HEADER:
PREREQUISITE:
DECOMPOSITION-1:
DECOMPOSITION-2
DECOMPOSITION-3:
DECOMPOSITION-4:

EFFECTS:

CONSTRAINT:

..............................

HEADER:
PREREQUISITE:
DECOMPOSITION:
EFFECTS:

PREREQUISITE:
DECOMPOSITION:
EFFECT:
CONSTRAINT:

..............................

HEADER:
PREREQUISITE:

DECOMPOSITION-1:
DECOMPOSITION-2:

EFFECT:

REQUEST(speaker, hearer, action)
WANT(speaker.' action)

SURFACE-REQUEST (speaker, hearer, action)
SURFACE-REQUEST(speaker, hearer,

INFORMIF(hearer, speaker, CANDO(hearer, action)))
SURFACE-INFORM(speaker, hearer, "(CANDO(speaker, action)))
SURFACE-INFORM(speaker, hearer, WANT(speaker, action))

WANT(hearer, action)
KNOW(hearer, WANT(speaker, action))

AGENT(action. hearer)

....................................................................................

INFORM(speaker, hearer, proposition)
KNOW(speaker, propostion)
SURFACE-INFORM(speaker, hearer, proposition)

KNOW(hearer, proposition)
KNOW(hearer, KNOW(speaker, proposition))

....................................................................................

INFORMREF(speaker, hearer, term, proposition)
KNOWREF(speaker, term, proposition)
achieve KNOW(hearer, proposition)

- KNOWREF(hearer, term, proposition)

PARAMETER(term, proposition)

....................................................................................

INFORMIF(speaker, hearer, proposition)
KNOWIF(speaker, proposition)

achieve KNOW(hearer, proposition)
achieve KNOW(hearer, ~proposition)

KNOWIF(hearer, proposition)

Figure 2.8: Speech Act Definitions

As shown in Figure 2.8, speech acts are formalized as plan schemas. using the notation

developed in previous sections. For example, the first speech act is a request from the speaker

to the hearer for an action. The constraint specifies that the hearer is the agent of the action.’

Mechnically this 1s only true for the first two decompositions. When the third decomposition (and someumes
the fourth) is used. the agent changes from the speaker in the decomposition to the hearer in the header. For example.
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< The decompoasitions indicate several typical surface linguistic acts, templates for actual utter- T
_ ances that could be used to execute the speech act. For example, if the speaker wanted the Y
8 .
R hearer to mount a magtape, any of the four following utterances could be used to convey the 3
" request: DA :
- 3
. "Mount a magtape.” (decomposition 1) .
- “Can you mount a magtape?” (decomposition 2) ’
Al [ can’t mount a magtape.” (decomposition 3) -
"[ want to mount a magtape.” (decomposition 4) .

.; Note, however, that only the first decomposition literally conveys the intended request. Unlike
3 Allen and Perrault [3], decompositions have been modified to include the conventionalized :
i forms of indirect speech acts. speech acts that are realized through surface forms that literally "
-:: appear to mean something else. Although such inferences could be derived from first princi- :
; ples (Allen and Perrault [3]), those issues will not be addressed here. Finally, the first effect of ’
) REQUEST is based on the assumption that the' hearer is cooperative (see Cohen and Perrault
. . [22] for a formulation where this assumption is not made). The second effect is new. and expli- :
C citly asserts that the hearer then believes the preconditions held if the act is done successfully. E
) This could again be inferred from first principles, but adding it to the definition allows the use h
of a simple plan recognition algorithm throughout. ',

The treaunent of INFORM and its two other variants is similar. The typical INFORM ,:_

) speech act is a declarative sentence. where the speaker tells the hearer something that the -
speaker but not the hearer knows. An example is "The train leaves at eight-fifty."” .
INFORMREF and INFORMIF are two vanations needed to handle wh-questions and yes/no :‘:
questions, respectively. For example, “"When does the train leave?" is a REQUEST to vl'

: INFORMREF, and "Does the train leave at 8:507" is a REQUEST to INFORMIF. The only ﬁ
difference from Allen and Perrault [3] is that there is an extra parameter to INFORMREF and ;
' KNOWREF. The asseruon KNOWREF (agent. term. proposition) means that agent knows a i .
N Ky
2 g
: :
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description of term, which satisfies proposition.

This is simply a notational variant that is closer to the actual implementation. Thus,

rather than stating the goal to know when train TR1 leaves as

KNOWREEF (agent, the x: depart-time (TR1, x))
as in Allen and Perrault [3), we write

KNOWREEF (agent, time, EQUAL (depart-time (TR1), 2time)),
where "time" is a variable of type time.

Not all such assertions involve the equality predicate. For example, the representation of

the goal behind the utterance "What do you want?” would be
KNOWREEF (speaker, ?action, WANT (hearer, ?action)).

This operator can be formally defined within a possible worlds semantics of the BELIEF
operator by using "quantifying in” as done in Allen and Perrault [3]. While this analysis is not

fully satisfactory, it is adequate for the present purposes.

As in Allen and Perrault (3], determination of the literal surface linguistic act is fairly
straightforward. The surface speech act is correlated with sentence mood as well as particular
words. Imperatives indicate SURFACE-REQUESTS, declaratives SURFACE-INFORMS, and
interrogatives SURFACE-REQUESTS to INFORM. Words such as "when"” can further res-
trict questions to a SURFACE-REQUEST to INFORM of a time. The propositional content
of the surface acts (e.g. action in SURFACE-REQUEST and proposition in SURFACE-

INFORM) can be determined via the standard syntactic and semantic analysis of most parsers.

A new surface form called SURFACE-NP has also been included. This allows a simple
treatment of sentence fragments such as definite noun phrases. As with indirect speech acts.

determination of the underlying speech act is left to the plan recognizer. For example, a

this happens when [ can't reach that book” requests the tall hearer to reach it instead.
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SURFACE-NP is yet another way of executing a REQUEST. More formally, the REQUEST
(speaker, hearer, action) schema would be as above, with a new decomposition of SURFACE-
NP(speaker.hearer,noun-phrase) and an added constraini CONTAINS (action, noun-phrase),
where CONTAINS states that the action ifivolveés the noun phrase as a parameter or recur-
sively, as a parameter of a parameter. An utterance such as "Track eleven?” would be parsed
as a SURFACE-NP (passenger, clerk, trackll), which could be recognized as a REQUESTY{(
passenger, clerk, action (...trackll...)). Since the utterance was a question, besides indicating a
REQUEST action can be further constrained to be an inform. Carberry [17] has independently
proposed a similar idea for the representation of fragments. For example, her semantic
representation of "Track eleven” would be the proposition genpred(Track11), which "indicates
that the name of the specific plan proposition is as yet unknown but that one of its parameters

must associate with the constant” track eleven.

As mentioned above, it will be assumed that ail meta-plans are done using speech acts.
For example, another way to achieve KNOWREF goals would have been to look up the
answer in a reference source. At the train station. for example, one can find departure times

and locations from a schedule.

4. Plan Recognition

Plan recognition is the process of inferring an agent’s plans and goals from utterances or
physical actions, the effects and methods of achieving such goals. Such a process involves not
only recognizing an initial plan, but also deciding whether subsequent utterances are related to

the same plan as opposed (o a new one.

Assumptions often made in plan recognition depend on certain relationships between the
observer and the agent being observed. [n intended plan recognition, the agent being observed

not only knows of the gbservation. but also performs actions that are intended to facilitate the

observer’s recognition process. The speech act view of communication (Grice [35], Searle [84])
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' and systems based on it (Allen and Perrault {3] . Sidner and Israel [86]) are examples. Each .
é agent is aware of what inferences the other could make, given their mutually believed plan E
E' libraries. Thus, the speaker constructs utterances enabling the desired inferences. The hearer in :
v turn views the inferences made as intended to be made, and thus acts on what the speaker )
\ intends for the hearer to think about the hearer's wants. This is in contrast to keyhole recogni- E y
f tion (Cohen et al [23]). Here the agent being observed is not aware of the observation and $
thus does not structure behavior in a way that facilitates plan recognition, as when an observer -

. watches an agent through a keyhole. The BELIEVER system [83]) and PAM [96] infer in this ".
3 manner. Helpful behavior provides unintended (as well as intended) responses and thus relies ;
on both types of recognition. For example, given a question such as "When does the train to )
: Montreal leave?”, "Eight-fifty. Gate seven” would be a helpful response since it provides more s.':
information than requested. As will be seen be!ow. assuming an intended mode of plan recog- -:.:
| nition will help justify making it an incremental process. 9
: In this work, the plan recognizer attempts to recognize the meta-plan, and thus the object
domain or meta-plan, that led to the production of the input utterance. The plan recognizer ;

' has at its disposal a library of domain and meta-plan schemas, the representation of the parse L,
of the input utterance, and the plan stack representing the current state of the dialogue. Using ;’
the plan recognition algorithm, the recognizer will then output a modified plan stack, : 4

representing as much of the updated plan state underlying the dialogue as can be unambigu- L

. ously determined. An utterance either continues an existing plan on the stack or introduces a ':'
4‘ meta-plan to some plan on the stack. If either of these is not possible for some reason, the .E
\ recognizer hypothesizes a plausible plan using any of the plan scuemas. At the beginning of a =
A dialogue there is no stack, so the general expectations from the task domain are used to guide E
[ the plan recognizer. For example, a train clerk expects questions about boarding and meeting E
' trains. The plan recognizer performs its task using an incremental heuristic search. Z
! :
W

.
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4.1. Forward Chaining

The plan recognizer's task is to find a sequence of instantiations of plan schemas. each

one containing the previous one in its decomposition,’ that connects every utterance to an

~ -

expected meta-goal. More specifically, the system tries to find plans in which the utterance is a
step, and then tries to find more abstract plans for which the postulated plan is a step, and so
on. Since every meta-plan takes other plans as arguments, recognition of any meta-plan will
need a recursive recognition on the argument plan introduced. For example, suppose a
speaker asked to buy a train ticket. A search through the decomposition of the meta-plan
schemas indicates that this request may be a way of introducing a plan to buy a ticket. Chain-
ing from introducing a plan does not yield any higher level goals. The same search process is

then performed on the introduced plan to buy a ticket. Searching through the plan library

shows that this act could be a step in a plan to take a train trip, which is itself not a step in any

other plans in the liBrary. Since taking a trip is a domain plan, no other plans are introduced

and recursive chaining halts.

Once a set of plans is recognized, each is expanded top-down by adding the definitions of
all steps and substeps until there is no unique expansion for any of the remaining substeps.
Each plan is then pushed onto a stack so that the original meta-plan is on top, every meta-plan

refers to the plan below it, and the domain dependent plan is on the bottom.

While this search is a simple tree climbing process and thus theoretically terminates, if
unconstrained it can be both costly as well as unable to yield a unique plan interpretation.
The search process needs to be controlled with various heuristics, as well as limited by dividing

it into incremental stages.

3Ptan chaining can also be done via effects and precondiuons. (Potlack {73} 1s even extending these types of links
to enable recognition of non-existent library plans) To keep the examptes simple. all plan schemas have been ex-
pressed so that chaining via decompositions is sutficient.
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4.2. Heuristics -
3
- . \
X 4.2.1. Coherence Heuristics N
+
The search process described above ig too general, for it does not take into account the -
2
influence of the portions of the previous discourse context still being discussed or interrupted R
W
X (as maintained on the stack). The following ordered heuristics control the search process by :d-
3 ,:'
A preferring sequences that correspond to the most coherent continuations of the dialogue. If
during the search process the observed action can be incorporated into a plan according to one E
: of the following three ordered preferences, the chaining stops: o
' (1) by a continuation of the executing plan on the stack (i.e. recognition of CONTINUE- =
, PLAN) >
Y (2) by introducing a clarification or correction meta-plan to any plan on the stack :_
% (3) by constructing meta-plans and associated object plans that are plausible given the ::‘_
domain-specific expectations about plausible goals of the speaker N
y Thus the recogniier prefers an utterance interpretation that continues a plan rather than
! ’
suspending one for its clarification or correction, which is more coherent than introducing a :-u
L%
’
new plan altogether. -
X Preference (1) involves situations where the agent does exactly what was expected in the }
3 given situation. The most common example of this occurs in answering a question, where the ::-;
U 'y
X answer is explicitly expected. As another example, if the agent was observed going to the ticket R
window and paying for a ticket, the BUY plan would be postulated. If the agent is next "
observed receiving the ticket. it would be recognized as a continuation of that BUY plan. A =3
(] P..
! more complex example is illustrated in Figure 2.9, where a BOARD subplan connects an -t
observed GOTO action with an expected (stacked) TAKE-TRAIN-TRIP goal. (The notation pog
1
represents the hierarchical structure of a plan instantiation as a tree). z
'
While preference (1) involves expanding and executing the plan on top of the stack. &
preference (2) allows for suspension of the top plan. For example, an agent may require more
o
=
I.\
- 3

""" e R e T R P L R R T SN A PR WAL NENT AT WL PRI O LI T L S WL S Ve i S FOrE PR W P, S o
TAOD), S N A S A AT N BN % S MR SN (T I M3 AN SN O R R W




50

agent TAKE-TRAIN-TRIP on train
agent'BOALRD_ train

agent GOTO train gate

Figure 2.9: Introduce a Subplan to Continue the Executing Plan on the Stack

information in order to actually execute the next step, and will thus need to temporarily
suspend execution while engaging in a clarification. Of course, this clarification may itseif be
suspended by another clarification during execution, and so on. Preference (2) thus involves
not only recognizing a clarification meta-plan based on the utterance, but also, in satisfying its
constraints, connecting the meta-plan to a plan on the stack. If the plan on the stack is not the
top plan the stack must be popped dowa to this plan before the new meta-plan is added to the
stack. If the plan that is the object of the clarification is ambiguous, the alternative closest to
the top of the stack is preferred. For example, if a BUY plan is on the top of the stack, the
utterance “"How much does the ticket cost?” could be recognized as a request for a clarification
of the PAY subplan. The clarification plan would be placed on the stack and the BUY plan
suspended as shown in Figure 2.10. Recall that the stack represents joint plans and may
involve multiple agents. The recognizer not only reconstructs the goals of the hearer, but by

being cooperative automatically adopts them as its own goals as well.

P S T T I S T I
L L R A G Y T T O R
WS IR ) -.~ ~ " LY -

"'\'){ b{l » !

»
¥

ol 9% S 4
yan!

a
'l.

20

.
& e
.

ANRRRAIRAG

IR |-

Cat” [
G S T

l.-
-

- .« s n

pe e,
v

BRI

v




Z
; N

; 'ﬁ,
7 . ~
o 51 >

~
-
‘ #

» clerk IDENTIFY-PARAMETER ticket-price -

‘. ;l
K agent BUY train ticket o
¥ agent PAYW clerk GIVE ticket :

o

* (‘.
’ &
+ -
2 Figure 2.10: Introduce a Clarification Meta-Plan to a Plan on the Stack 0
2 Preference (3) may involve not only introducing a new plan but also, if it is a meta-plan, :
:: using the coastraints to recursively introduce a plausible plan for the meta-plan to be about. ;\

. L

This occurs most frequently at the start of a dialogue or topic shift, i.e. when the previous: plan o

[ context either does not exist or is ignored. Suppose a speaker begins a dialogue with "I want ::'.j
¥ to buy a ticket to Montreal.” The utterance is recognized as an explicit plan introduction, a :::'.
| meta-plan with constraints that enable the recognition of the plan being introduced as well.
’ Figure 2.11 shows the stack constructed out of these plans. As desired, the plans are placed on :
-~

] S
‘ the stack in the order they were generated rather than the order they were recognized. Q
S

- INTRODUCE-PLAN -
. [ want to buy a ticket to Montreal \.

agent TAKE-TRAIN-TRIP to Montreal =

B \
; agent BUY train ticket e
3 ’\
Y

Figure 2.11: Recognizing Multiple Plans from One Utterance ~
] }-
3 ..-:

/ Note that each preference involves not only recognizing a meta-pian based on the utter- :’r

¥ .
ance. but in satisfying its constraints. also involves connecting the meta-plan to an expected =
plan (which is either an already stacked plan or an introduced plausible domain plan). ;::'
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Allen and Perrault also have heuristics preferring candidate plans closest to the expecta-

l» :
é‘? , 52 R
o

While these heuristics and-their ordering have not been validated with psychological )

:E experimentation, they have intuitive appeal. For example, if the first heuristic was always appli- :
1 cable, the discourse behavior would default to the earlier systems in which a dialogue contains :
A no interruptions. Preferring the second heiiristic’over the third corresponds to the view that v
E without any explicit linguistic markings (as discussed in the next chapter), topic change is :
}; always least expected. Thus, while interruptions are not generally predicted, they can be han- '
dled when they do occur. These heuristics also follow the principle of Occam’s razor, since -

_, they are ordered as to introduce as few new plans as possible. Other models of discourse (e.g., t
! .,, Carberry [15], McKeown [64]) use similar heuristics. :“
